This article was downloaded by: [University of Haifa Library]

On: 20 August 2012, At: 10:59 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/qmcl19

Synthesis and Structure of FeCl₃-CrO₃-Graphite Bi-Intercalation Compound

Jan M. Skowroński ^a & Antoni W. Morawski ^b

^a Poznań University of Technology, Institute of Chemistry and Technical Electrochemistry, ul. Piotrowo 3, 60-965, Poznań, Poland

Version of record first published: 04 Oct 2006

To cite this article: Jan M. Skowroński & Antoni W. Morawski (1998): Synthesis and Structure of FeCl₃-CrO₃-Graphite Bi-Intercalation Compound, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 310:1, 63-68

To link to this article: http://dx.doi.org/10.1080/10587259808045315

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^b Technical University of Szczecin, Institute of Inorganic Chemical Technology, ul. Pulaskiego 10, 70-322, Szczecin, Poland

Synthesis and Structure of FeCl₃-CrO₃-Graphite Bi-Intercalation Compound

JAN M. SKOWROŃSKI^a and ANTONI W. MORAWSKI^b

^aPoznań University of Technology, Institute of Chemistry and Technical Electrochemistry, ul. Piotrowo 3, 60-965 Poznań, Poland; ^bTechnical University of Szczecin, Institute of Inorganic Chemical Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland

Abstract The paper deals with the synthesis and structure of FeCl₃-CrO₃-graphite bi-intercalation compound (FeCl₃-CrO₃-GBC) prepared during the subsequent intercalation of chromium trioxide into stage-2 FeCl₃-GIC/graphite system. From the results of the X-ray diffraction measurements and the scanning electron microscopy coupled with energy dispersive X-ray analysis it was concluded that the product consists of a mixture of saturated FeCl₃-CrO₃-GBC and stage-2 FeCl₃-GIC. Based on the model of the transformation from stage-2 FeCl₃-GIC/graphite system to FeCl₃-CrO₃-GBC, it can be understood that upon the subsequent intercalation process CrO₃ is intercalated in the interlayer spacings of graphite both free and occupied by FeCl₃. Due to the latter invasion the double-layer co-intercalation domain is formed whereas a part of FeCl₃ is displaced to the zone of the pristine graphite present in the host FeCl₃-GIC.

Keywords: graphite bi-intercalation compound, FeCl₃; CrO₃; XRD; EDX

INTRODUCTION

Graphite bi-intercalation compounds (GBCs) are formed when the vacant interlayer spacings of graphite in graphite intercalation compounds (GICs)

with the stage number $n \ge 2$ are successively filled with another intercalate. During the process of bi-intercalation the secondary intercalate can invade not only the vacant interspaces of GIC but also the interspaces occupied by the primary intercalate. As a result of the latter ingress the co-intercalation domains, intermediate or stable, are formed within GBC. Recently, GBCs have attracted considerable attention because of their novel properties arising from a variety of fascinating structures and compositions^[1]. GBCs involving metal oxides are not numerous. Among them are those with CrO_3 (e.g. CrO_3 - H_2SO_4 -GBC $^{[2,3]}$, CrO_3 - $HCIO_4$ -GBC $^{[4,5]}$). Until now no GBC containing both transition metal chloride and oxide has been prepared.

In the present paper the synthesis of FeCl₃-CrO₃-GBC is reported for the first time. The transformation from stage-2 FeCl₃-GIC to FeCl₃-CrO₃-GBC is discussed. From the results obtained the formation of the double-layer co-intercalation domain, FeCl₃-CrO₃, within GBC is suggested.

EXPERIMENTAL

Anhydrous FeCl₃ was intercalated into natural Sri Lanca graphite (flakes 30-100 μm in diameter and 1-20 μm in thickness) from a vapour phase at 300 °C for 20 hrs^[6]. The intercalation reaction was carried out with excess of FeCl₃ (52.12 wt.%) in the starting mixture. The obtained stage-2 FeCl₃-GIC (I_c = 1.281 nm) was then subjected to the subsequent intercalation with CrO₃^[4,5,7]. A mixture of 5 g FeCl₃-GIC and 10 g CrO₃ in 40 cm³ glacial acetic acid was refluxed for 1.5 h. The product of intercalation was purified by washing with cold glacial acetic acid and acetone and then dried to a constant weight. The X-ray diffraction (XRD) patterns for the original FeCl₃-GIC and the resulting FeCl₃-CrO₃-GBC are depicted in Fig. 1. For observing the concentration profiles of intercalates in both CrO₃-GIC and FeCl₃-CrO₃-GBC the energy dispersive X-ray (EDX) analysis coupled with scanning electron microscopy (SEM) was used (Figs. 2 and 3).

RESULTS AND DISCUSSION

As seen from the XRD pattern illustrated in Fig. 1a, the host stage-2 FeCl₃-GIC is admixed with the phase of unreacted graphite. The identity period of the compound, I_c = 1.28 nm, is consistent with the estimates reported elsewhere for FeCl₃-GIC^[8,9]. The EDX profiles for Fe and Cl (Fig. 2) show the island-like distribution of intercalate within a whole flake of FeCl₃-GIC. The decreased concentration of intercalate at the most outer regions of flake arises from the washing procedure used to remove unreacted FeCl₃ from the product of intercalation. Due to such a treatment some intercalate is extruded from the compound. It was expected that glacial acetic acid used as a solvent during the subsequent intercalation of CrO₃ brings about further deintercalation of FeCl₃ from the edge regions of the flake. The released FeCl₃ present at the

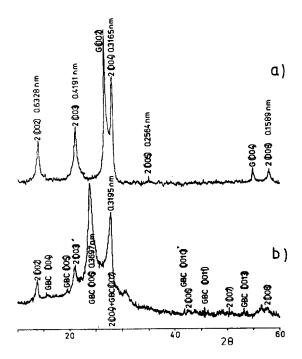


FIGURE 1 XRD patterns recorded for (a) the original FeCl₃-GIC and (b) FeCl₃-CrO₃-GBC. $CuK\alpha$ radiation.

graphite-solution interface might play the role of a strong oxidizer promoting intercalation of CrO₃ into the occupied graphite galleries of stage-2 FeCl₃-GIC. Furthermore, the mechanism of intercalation of CrO₃ into the vacant galleries of the host FeCl₃-GIC was assumed to resemble that reported for the process occurring for the pristine graphite^[4,5,7]. The XRD pattern obtained for the product of the subsequent intercalation of CrO₃ into stage-2 FeCl₃-GIC (Fig. 1b) confirms the above prediction and provides the evidence for the

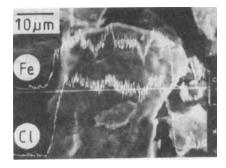


FIGURE 2 SEM micrograph with superimposed EDX distribution lines for FeCl₃-GIC.

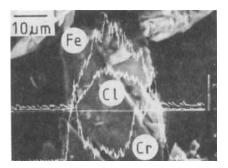


FIGURE 3 SEM micrograph with superimposed EDX distribution lines for FeCl₃-CrO₃-GIC

formation of bi-intercalation compound with the c-axis identity period $I_c = 2.231 \text{ nm}$.

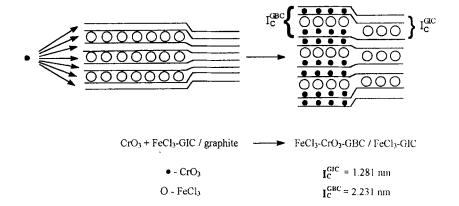


FIGURE 4 The model of the transformation from stage-2 FeCl₃-GIC/graphite system to FeCl₃-CrO₃-GBC.

To approach to the structural description of FeCl₃-CrO₃-GBC the thickness of the FeCl₃ layer in the host FeCl₃-GIC, $\Delta d = 0.611$ nm, and the thickness of the CrO_3 layer in CrO_3 -GIC, $\Delta d = 0.474 \text{ nm}^{[3,5]}$ is taken into account. $I_c = 2.231$ nm calculated for FeCl₃-CrO₃-GBC is nearly equal to the sum of $d_{i(1)} = 0.810$ nm and $d_{i(2)} = 1.421$ nm (the $d_{i(1)}$ value being the thickness of the interlayer spacing of graphite filled with CrO3 whereas the di(2) value corresponding to the interlayer spacing in which the intercalate is accommodated in the double-layer sandwich comprising the FeCl₃ and CrO₃ layers). From this calculation, it may be inferred that during the subsequent intercalation the invasion of CrO₃ occurs into the empty graphite galleries as well as those occupied by the primary intercalate. This conclusion is supported by the distribution lines recorded for FeCl₃-CrO₃-GBC (Fig. 3). As can be seen from this figure, the lines for Fe and Cr overlap to each other at the peripheral regions of the graphite flake whereas the graphite core is preferably filled with FeCl₃ and almost completely free of CrO₃. This result agrees with the XRD pattern for FeCl₃-CrO₃-GBC (Fig. 1b) in which the peaks responsible for the original FeCl₃-GIC are observed besides those corresponding to the new phase of

FeCl₃-CrO₃-GBC. According to the proposed model of bi-intercalation (Fig. 4), the subsequent intercalation of CrO₃ occurs into both the vacant interlayer spacings of graphite in FeCl₃-GIC and the interspaces occupied with FeCl₃. During the latter process the co-intercalation domain is formed following the displacement of the FeCl₃ islands into the regions free of intercalate. Such an explanation account for why the graphite peaks recorded on the XRD pattern for the host material (Fig. 1a) disappear in the final product with CrO₃ (Fig. 1b). In the light of this, the final product of the reaction with CrO₃ may be recognized as a mixture of saturated FeCl₃-CrO₃-GBC and stage-2 FeCl₃-GIC. The depth of intercalation noted for CrO₃ in GBC, not exceeding 15 μm, (Fig. 3), is comparable with that reported for CrO₃-GIC^[10,11], CrO₃-H₂SO₄-GBC^[11] and CrO₃-Br₂-GIC^[12].

Acknowledgements

This work was partly supported by the State Committee for Scientific Research of Poland (KBN grant No. 3 T09B 051 12).

References

- [1.] J. M. Skowroński, in *Handbook of Organic Conductive Molecules and Polymers*, edited by H. S. Nalwa (John Wiley and Sons, Ltd, Chichester, 1997), Vol. 1, Chap. 12, pp. 621-686.
- [2.] J. M. Skowroński, Synth. Metals, 55, 1447 (1993)
- [3.] J. M. Skowroński, H. Shioyama, Carbon, 33, 1473 (1995).
- [4.] J. M. Skowroński, Synth. Met., 73, 21 (1995).
- [5.] J. M. Skowroński, J. Phys. Chem. Solids, 57, 695 (1996).
- [6.] K. Kałucki and A. W. Morawski, Reactivity of Solids, 4, 269 (1987).
- [7.] N. Platzer and B. de la Martinière, Bull. Soc. Chim. Fr., 197 (1961).
- [8.] Yu. N. Novikov, M. E. Vol'pin, V. E. Prusakov et al., Zh. Strukt. Khim 11, 1039 (1970).
- [9.] W. Metz and D. Hohlwein, Carbon 13, 87 (1975).
- [10.] J. M. Skowroński, J. Douglade, A. Metrot, *Mat. Sci. Forum*, 91-93, 659 (1992).
- [11.] J. M. Skowroński, Synth. Met., in press.
- [12.] H. Preiss, Carbon, 27, 561 (1989).